Gene Regulatory Network Interactions in Sea Urchin Endomesoderm Induction
نویسندگان
چکیده
A major goal of contemporary studies of embryonic development is to understand large sets of regulatory changes that accompany the phenomenon of embryonic induction. The highly resolved sea urchin pregastrular endomesoderm-gene regulatory network (EM-GRN) provides a unique framework to study the global regulatory interactions underlying endomesoderm induction. Vegetal micromeres of the sea urchin embryo constitute a classic endomesoderm signaling center, whose potential to induce archenteron formation from presumptive ectoderm was demonstrated almost a century ago. In this work, we ectopically activate the primary mesenchyme cell-GRN (PMC-GRN) that operates in micromere progeny by misexpressing the micromere determinant Pmar1 and identify the responding EM-GRN that is induced in animal blastomeres. Using localized loss-of -function analyses in conjunction with expression of endo16, the molecular definition of micromere-dependent endomesoderm specification, we show that the TGFbeta cytokine, ActivinB, is an essential component of this induction in blastomeres that emit this signal, as well as in cells that respond to it. We report that normal pregastrular endomesoderm specification requires activation of the Pmar1-inducible subset of the EM-GRN by the same cytokine, strongly suggesting that early micromere-mediated endomesoderm specification, which regulates timely gastrulation in the sea urchin embryo, is also ActivinB dependent. This study unexpectedly uncovers the existence of an additional uncharacterized micromere signal to endomesoderm progenitors, significantly revising existing models. In one of the first network-level characterizations of an intercellular inductive phenomenon, we describe an important in vivo model of the requirement of ActivinB signaling in the earliest steps of embryonic endomesoderm progenitor specification.
منابع مشابه
Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology.
Gene regulatory networks for development underlie cell fate specification and differentiation. Network topology, logic and dynamics can be obtained by thorough experimental analysis. Our understanding of the gene regulatory network controlling endomesoderm specification in the sea urchin embryo has attained an advanced level such that it explains developmental phenomenology. Here we review how ...
متن کاملDevelopmental gene network analysis.
The developmental process is controlled by the information processing functions executed by the cis-elements that regulate the expression of the participating genes. A model of the network of cis-regulatory interactions that underlies the specification of the endomesoderm of the sea urchin embryo is analyzed here. Although not all the relevant interactions have yet been uncovered, the model sho...
متن کاملInformation processing at the foxa node of the sea urchin endomesoderm specification network.
The foxa regulatory gene is of central importance for endoderm specification across Bilateria, and this gene lies at an essential node of the well-characterized sea urchin endomesoderm gene regulatory network (GRN). Here we experimentally dissect the cis-regulatory system that controls the complex pattern of foxa expression in these embryos. Four separate cis-regulatory modules (CRMs) cooperate...
متن کاملR11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres.
A gene regulatory network (GRN) controls the process by which the endomesoderm of the sea urchin embryo is specified. In this GRN, the program of gene expression unique to the skeletogenic micromere lineage is set in train by activation of the pmar1 gene. Through a double repression system, this gene is responsible for localization of expression of downstream regulatory and signaling genes to c...
متن کاملNemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo.
Studies in Caenorhabditis elegans and vertebrates have established that the MAP kinase-related protein NLK counteracts Wnt signalling by downregulating the transcription factor TCF. Here, we present evidence that during early development of the sea urchin embryo, NLK is expressed in the mesodermal precursors in response to Notch signalling and directs their fate by downregulating TCF. The expre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Biology
دوره 7 شماره
صفحات -
تاریخ انتشار 2009